Quantitative multiplexing with nano-self-assemblies in SERS
نویسندگان
چکیده
Multiplexed or simultaneous detection of multiple analytes is a valuable tool in many analytical applications. However, complications caused by the presence of interfering compounds in a sample form a major drawback in existing molecular sensor technologies, particularly in multi-analyte systems. Although separating analytes through extraction or chromatography can partially address the problem of interferents, there remains a need for developing direct observational tools capable of multiplexing that can be applied in situ. Surface-enhanced Raman Spectroscopy (SERS) is an optical molecular finger-printing technique that has the ability to resolve analytes from within mixtures. SERS has attracted much attention for its potential in multiplexed sensing but it has been limited in its quantitative abilities. Here, we report a facile supramolecular SERS-based method for quantitative multiplex analysis of small organic molecules in aqueous environments such as human urine.
منابع مشابه
Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor
BACKGROUND It is challenging to achieve ultrasensitive and selective detection of waterborne pathogens at extremely low levels (i.e., single cell/mL) using conventional methods. Even with molecular methods such as ELISA or PCR, multi-enrichment steps are needed which are labor and cost intensive. In this study, we incorporated nano-dielectrophoretic microfluidic device with Surface enhanced Ram...
متن کاملRaman-encoded microbeads for spectral multiplexing with SERS detection
Simultaneous detection of multiple molecular targets can greatly facilitate early diagnosis and drug discovery. Encoding micron-sized beads with optically active tags is one of the most popular methods to achieve multiplexing. Noble metal nanoparticle labels for optical detection by surface-enhanced Raman spectroscopy (SERS) exhibit narrow bandwidths, high photostability and intense Raman signa...
متن کاملQuantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs.
We show how the macrocyclic host, cucurbit[8]uril (CB[8]), creates precise subnanometer junctions between gold nanoparticles while its cavity simultaneously traps small molecules; this enables their reproducible surface-enhanced Raman spectroscopy (SERS) detection. Explicit shifts in the SERS frequencies of CB[8] on complexation with guest molecules provides a direct strategy for absolute quant...
متن کاملIntracellular mapping with SERS-encoded gold nanostars.
Here we report on the design, synthesis and application of small, highly bright, star-shaped SERS encoded single nanoparticles with the ability of providing an optical signal upon excitation with near infrared light. These particles are colloidally stable, fully biocompatible and can be internalized into living cells for intracellular imaging.
متن کاملIn situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.
The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014